Semos Education Semos Education
  • Ponedeljak-Petak 9:00AM - 5:00PM
  • Javi nam se: +381 63 4567 50
  • Piši nam: info@semosedu.com
EN / МК / RS
Кошничка
REZERVIŠI MESTO
  • Opis
  • Sadržaj
  • Kome je namenjeno
  • Sertifikati

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.

This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

LEARNING PATH 1
Design a machine learning solution

  • Module 1: Design a data ingestion strategy for machine learning projects
  • Module 2: Design a machine learning model training solution
  • Module 3: Design a model deployment solution
  • Module 4: Design a machine learning operations solution

LEARNING PATH 2
Explore and configure the Azure Machine Learning workspace

  • Module 1: Explore Azure Machine Learning workspace resources and assets
  • Module 2: Explore developer tools for workspace interaction
  • Module 3: Make data available in Azure Machine Learning
  • Module 4: Work with compute targets in Azure Machine Learning
  • Module 5: Work with environments in Azure Machine Learning

LEARNING PATH 3
Work with data in Azure Machine Learning

  • Module 1: Make data available in Azure Machine Learning

LEARNING PATH 4
Work with compute in Azure Machine Learning

  • Module 1: Work with compute targets in Azure Machine Learning
  • Module 2: Work with environments in Azure Machine Learning

LEARNING PATH 5
Experiment with Azure Machine Learning

  • Module 1: Find the best classification model with Automated Machine Learning
  • Module 2: Track model training in Jupyter notebooks with MLflow

LEARNING PATH 6
Use notebooks for experimentation in Azure Machine Learning

  • Module 1: Track model training in Jupyter notebooks with MLflow

LEARNING PATH 7
Train models with scripts in Azure Machine Learning

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning

LEARNING PATH 8
Optimize model training with Azure Machine Learning

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning
  • Module 4: Run pipelines in Azure Machine Learning

LEARNING PATH 9
Manage and review models in Azure Machine Learning

  • Module 1: Register an MLflow model in Azure Machine Learning
  • Module 2: Create and explore the Responsible AI dashboard for a model in Azure Machine Learning

LEARNING PATH 10
Deploy and consume models with Azure Machine Learning

  • Module 1: Deploy a model to a managed online endpoint
  • Module 2: Deploy a model to a batch endpoint

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Microsoft Certified: Azure Data Scientist Associate after successful completion of the Exam DP-100: Designing and Implementing a Data Science Solution on Azure

Опис

Learn how to operate machine learning solutions at cloud scale using Azure Machine Learning.

This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring with Azure Machine Learning and MLflow.

Содржина

LEARNING PATH 1
Design a machine learning solution

  • Module 1: Design a data ingestion strategy for machine learning projects
  • Module 2: Design a machine learning model training solution
  • Module 3: Design a model deployment solution
  • Module 4: Design a machine learning operations solution

LEARNING PATH 2
Explore and configure the Azure Machine Learning workspace

  • Module 1: Explore Azure Machine Learning workspace resources and assets
  • Module 2: Explore developer tools for workspace interaction
  • Module 3: Make data available in Azure Machine Learning
  • Module 4: Work with compute targets in Azure Machine Learning
  • Module 5: Work with environments in Azure Machine Learning

LEARNING PATH 3
Work with data in Azure Machine Learning

  • Module 1: Make data available in Azure Machine Learning

LEARNING PATH 4
Work with compute in Azure Machine Learning

  • Module 1: Work with compute targets in Azure Machine Learning
  • Module 2: Work with environments in Azure Machine Learning

LEARNING PATH 5
Experiment with Azure Machine Learning

  • Module 1: Find the best classification model with Automated Machine Learning
  • Module 2: Track model training in Jupyter notebooks with MLflow

LEARNING PATH 6
Use notebooks for experimentation in Azure Machine Learning

  • Module 1: Track model training in Jupyter notebooks with MLflow

LEARNING PATH 7
Train models with scripts in Azure Machine Learning

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning

LEARNING PATH 8
Optimize model training with Azure Machine Learning

  • Module 1: Run a training script as a command job in Azure Machine Learning
  • Module 2: Track model training with MLflow in jobs
  • Module 3: Perform hyperparameter tuning with Azure Machine Learning
  • Module 4: Run pipelines in Azure Machine Learning

LEARNING PATH 9
Manage and review models in Azure Machine Learning

  • Module 1: Register an MLflow model in Azure Machine Learning
  • Module 2: Create and explore the Responsible AI dashboard for a model in Azure Machine Learning

LEARNING PATH 10
Deploy and consume models with Azure Machine Learning

  • Module 1: Deploy a model to a managed online endpoint
  • Module 2: Deploy a model to a batch endpoint
За кого е наменет

This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud.

Сертификати

Microsoft Certified: Azure Data Scientist Associate after successful completion of the Exam DP-100: Designing and Implementing a Data Science Solution on Azure

Dosadašnja iskustva

Šta su rekli naši polaznici o nama

  • - Marko Krstevski Student za Microsoft .NET

    Želeći da proširim svoje znanje, odlučio sam da se upišem u Semos Education gde dobijam potrebno znanje i iskustvo.

  • - Teodor Markovski Student

    Želja da postanem Cloud arhitekta dovela me do Semos Education-a. Oduševljen sam pozitivnim iskustvima bivših studenata i načinom na koji predavači i Karijerni centar brinu o studentima.

  • - Viktorija Georgieva Mentorka letnjeg programa za Python Developer-a

    Reputacija Semos Education-a za kvalitetnu obuku i mogućnost učenja od iskusnih instruktora odigrala je značajnu ulogu u mojoj odluci.

  • - Borče Peltekovski Akreditirana Akademija za grafički dizajn

    Po završetku kurseva u Semos Education-u, vidim sebe u nekoj kompaniji koja radi sa tehnologijom, kao što su na primer Samsung, Apple ili kompanija sličnog kalibra.

  • - Nataša Dimovska Oficijalni Data Science Institut

    Konstantno i efikasno učenje su ključni aspekti ako želite da sebi garantujete siguran put ka uspehu. "Ne odustaj lako i vrati se na izazove sa još većim elanom za ostvarivanje zacrtanih ciljeva” postao je moje životno moto koji sam primenila i u promeni svoje karijere.

  • - Petar Vasilev Oficijalni Data Science Institut

    Za čoveka koji nikada nije imao dodir sa IT sferom, Data Science Akademija u Semos Education-u mi je pružila veliko teorijsko i praktično iskustvo, otvorila mi je dosta novih vrata i stekao sam mnogo novih poznanstava preko Akademije.

  • - Александра Мандиќ Официјалниот Data Science Институт

    Најдобрата инвестиција е инвестицијата во себе

Upoznajte instruktore

  • Dejan Vakanski  

    Microsoft Certified Trainer

    Data Consultant,

    Data Scientist @Semos Education

     

    22+ godine iskustva

  • Verica Manevska  

    Microsoft Certified Trainer

    Data analyst/Power BI Developer @iborn.net

     

    12+ godina iskustva

  • Simka Janevska  

    Microsoft Certified Trainer

    Data and Analytics Engineer @Qinshift

     

    1+ godina iskustva

Kontakt